Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Basavegowda Nagaraj,^a Rajenahally S. Narasegowda,^a Hemmige S. Yathirajan,^a Santhosh L. Gaonkar^a and Michael Bolte^b*

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.04 Å R factor = 0.044 wR factor = 0.102 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_{33}H_{25}BrN_4$, belongs to the class of substituted tetrazoles. This type of compound is an important starting material for the synthesis of pharmaceutically active materials.

5-[4'-(Bromomethyl)biphenyl-2-yl]-2-trityl-

Received 14 February 2005 Accepted 18 February 2005 Online 26 February 2005

Comment

2H-tetrazole

The title compound, (I), is a key intermediate for the synthesis of the antihypertensive drug losartan (Griffiths *et al.*, 1999) and it is also used as a starting material for the synthesis of trityl losartan (Sieron *et al.*, 2004). In view of the importance of (I), its crystal structure has been determined.

A perspective view of the title compound is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 1.7; *MOGUL*, Version 1.0.1; Allen, 2002). The dihedral angle between the tetrazole heterocycle and the phenyl ring attached to it is $82.11 (9)^{\circ}$. The dihedral angle between the benzene rings of the biphenyl group is $52.88 (8)^{\circ}$. The C–Br bond is rotated almost perpendicular to the benzene ring to which this group is attached (Table 1).

Experimental

Compound (I) was synthesized according to the procedure given by Aldrich *et al.* (1989). 5-(4'-Methylbiphenyl-2-yl)-1*H*-tetrazole (2.36 g, 10 mmol), trityl chloride (2.78 g, 10 mmol) and triethylamine (2 ml) were stirred at room temperature in dichloromethane (25 ml) for 2 h. The product was treated with 1-bromo-2,5-pyrrolidinedione (1.78 g, 10 mmol) and benzoyl peroxide (0.1 g) in carbon tetrachloride (10 ml) to obtain the title compound. Compound (I) was recrystallized from ethyl methyl ketone (yield 80%, m.p. 411 K). IR (KBr, cm⁻¹): v 3029 (*m*), 2921 (*m*), 1660 (*w*), 1620 (*w*), 1452 (*m*), 1215 (*w*), 893 (*w*), 802 (*s*), 722 (*s*), 705 (*s*); ¹H NMR (CDCl₃, p.p.m.): 4.40 (*s*, 2H,

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

CH₂), 7.15 (*d*, 2H, ArH), 7.30–7.70 (*m*, 21H, ArH); ¹³C NMR (CDCl₃, p.p.m.): 38.2 (*t*, CH₂), 62.1 (*s*, C), 126.2 (*d*, ArC), 127.9 (*d*, ArC), 128.2 (*d*, ArC), 128.9 (*d*, ArC), 129.6 (*d*, ArC), 131.0 (*d*, ArC), 135.9 (*s*, ArC), 136.2 (*s*, ArC), 137.8 (*s*, ArC), 138.0 (*s*, ArC), 143.2 (*s*, ArC). Analysis calculated for $C_{33}H_{25}BrN_4$: C 71.10, H 4.52, N 10.05%; found: C 71.18, H 4.59, N 10.01%.

 $D_x = 1.376 \text{ Mg m}^{-3}$ Mo *K* α radiation

reflections

 $\begin{array}{l} \theta = 3.6 {-} 25.6^{\circ} \\ \mu = 1.56 \ \mathrm{mm}^{-1} \end{array}$

T = 173 (2) K

Block, colourless

 $0.28 \times 0.26 \times 0.25 \text{ mm}$

Cell parameters from 46712

Crystal data

 $\begin{array}{l} C_{33}H_{25}BrN_4\\ M_r = 557.48\\ Monoclinic, P2_1/n\\ a = 10.6150 \ (6) \ \AA\\ b = 14.9140 \ (5) \ \AA\\ c = 17.3961 \ (9) \ \AA\\ \beta = 102.263 \ (4)^\circ\\ V = 2691.2 \ (2) \ \AA^3\\ Z = 4 \end{array}$

Data collection

Stoe IPDS-II two-circle	4939 independent reflections
diffractometer	4290 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.036$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.4^{\circ}$
(MULABS; Spek, 2003;	$h = -12 \rightarrow 12$
Blessing, 1995)	$k = -18 \rightarrow 17$
$T_{\min} = 0.670, \ T_{\max} = 0.687$	$l = -20 \rightarrow 20$
31845 measured reflections	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.047P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.044$	+ 3.0688 <i>P</i>]
$wR(F^2) = 0.102$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} = 0.001$
4939 reflections	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
343 parameters	$\Delta \rho_{\rm min} = -0.87 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: none

Table 1

Selected geometric parameters (Å, °).

N1-N5	1.325 (3)	C3-N4	1.356 (3)
N1-N2	1.347 (3)	N4-N5	1.328 (3)
N2-C3	1.328 (3)	C57-Br1	1.966 (3)
N5-N1-N2	113.42 (19)	N5-N4-C3	106.3 (2)
C3-N2-N1	101.90 (19)	N1-N5-N4	106.08 (19)
N2-C3-N4	112.3 (2)		
C55-C54-C57-Br1	78.8 (3)		

All H atoms were located in a difference map but were positioned geometrically and refined with fixed individual displacement parameters (set to 1.2 times U_{eq} of the parent C atom) using a riding model, with C-H = 0.95 Å for aromatic and 0.99 Å for methylene H atoms.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine

Perspective view of the title compound, with the atom-numbering scheme; displacement ellipsoids are drawn at the 50% probability level.

structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL-Plus* (Sheldrick, 1991); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2003).

References

Aldrich, T. E., Duncia, J. V. & Pierce, M. E. (1989). US Patent No. 4 870 186. Allen, F. H. (2002). Acta Cryst. B58, 380–388.

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Griffiths, G. J., Hauck, M. B., Imwinkelreid, R., Kohr, J., Roten, C. A. & Stucky, G. C. (1999). J. Org. Chem. 64, 8084–8086.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). *SHELXTL-Plus*. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sieron, L., Nagaraj, B., Prabhuswamy, B., Yathirajan, H. S., Nagaraja, P., Narasegowda, R. S. & Gaonkar, S. L. (2004). Acta Cryst. C60, 0821–0823.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.