Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Basavegowda Nagaraj, ${ }^{\text {a }}$
Rajenahally S. Narasegowda, ${ }^{\text {a }}$
Hemmige S. Yathirajan, ${ }^{\text {a }}$
Santhosh L. Gaonkar ${ }^{\text {a }}$ and Michael Bolte ${ }^{\mathbf{b}_{*}}$

${ }^{\text {a }}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ${ }^{\text {b }}$ Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-CurieStraße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.04 \AA$
R factor $=0.044$
$w R$ factor $=0.102$
Data-to-parameter ratio $=14.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

5-[4'-(Bromomethyl)biphenyl-2-yl]-2-trityl2 H -tetrazole

The title compound, $\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{BrN}_{4}$, belongs to the class of substituted tetrazoles. This type of compound is an important starting material for the synthesis of pharmaceutically active materials.

Comment

The title compound, (I), is a key intermediate for the synthesis of the antihypertensive drug losartan (Griffiths et al., 1999) and it is also used as a starting material for the synthesis of trityl losartan (Sieron et al., 2004). In view of the importance of (I), its crystal structure has been determined.

(I)

A perspective view of the title compound is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 1.7; MOGUL, Version 1.0.1; Allen, 2002). The dihedral angle between the tetrazole heterocycle and the phenyl ring attached to it is 82.11 (9) ${ }^{\circ}$. The dihedral angle between the benzene rings of the biphenyl group is $52.88(8)^{\circ}$. The $\mathrm{C}-\mathrm{Br}$ bond is rotated almost perpendicular to the benzene ring to which this group is attached (Table 1).

Experimental

Compound (I) was synthesized according to the procedure given by Aldrich et al. (1989). 5-(4'-Methylbiphenyl-2-yl)-1H-tetrazole (2.36 g , 10 mmol), trityl chloride ($2.78 \mathrm{~g}, 10 \mathrm{mmol}$) and triethylamine (2 ml) were stirred at room temperature in dichloromethane $(25 \mathrm{ml})$ for 2 h . The product was treated with 1-bromo-2,5-pyrrolidinedione (1.78 g , 10 mmol) and benzoyl peroxide (0.1 g) in carbon tetrachloride (10 ml) to obtain the title compound. Compound (I) was recrystallized from ethyl methyl ketone (yield 80%, m.p. 411 K). IR (KBr , cm^{-1}): v3029(m), 2921 (m), $1660(w), 1620(w), 1452(m), 1215(w)$, $893(w), 802(s), 722(s), 705(s) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, p.p.m.) : $4.40(s, 2 \mathrm{H}$,

Received 14 February 2005 Accepted 18 February 2005 Online 26 February 2005
$\left.\mathrm{CH}_{2}\right), 7.15(d, 2 \mathrm{H}, \mathrm{ArH}), 7.30-7.70(m, 21 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m.): $38.2\left(t, \mathrm{CH}_{2}\right), 62.1(s, \mathrm{C}), 126.2(d, \mathrm{ArC}), 127.9(d, \mathrm{ArC}), 128.2$ (d, ArC), 128.9 (d, ArC), 129.6 (d, ArC), 131.0 ($d, \mathrm{ArC)}$,135.9 (s, $\mathrm{ArC}), 136.2(s, \operatorname{ArC}), 137.8(s, \mathrm{ArC}), 138.0(s, \mathrm{ArC}), 143.2(s, \mathrm{ArC})$. Analysis calculated for $\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{BrN}_{4}$: C $71.10, \mathrm{H} 4.52, \mathrm{~N} 10.05 \%$; found: C 71.18, H 4.59, N 10.01\%.

Crystal data

$\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{BrN}_{4}$
$M_{r}=557.48$
Monoclinic, $P 2_{1} / n$
$a=10.6150(6) \AA$
$b=14.9140(5) \AA$
$c=17.3961(9) \AA$
$\beta=102.263(4)^{\circ}$
$V=2691.2(2) \AA^{3}$
$Z=4$
$D_{x}=1.376 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 46712
reflections
$\theta=3.6-25.6^{\circ}$
$\mu=1.56 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.28 \times 0.26 \times 0.25 \mathrm{~mm}$

Data collection

Stoe IPDS-II two-circle
diffractometer
ω scans
Absorption correction: multi-scan
(MULABS; Spek, 2003;
Blessing, 1995)
$T_{\text {min }}=0.670, T_{\text {max }}=0.687$
31845 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.102$
$S=1.09$
4939 reflections
343 parameters
H-atom parameters constrained

Figure 1
Perspective view of the title compound, with the atom-numbering scheme; displacement ellipsoids are drawn at the 50% probability level.
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

References

Aldrich, T. E., Duncia, J. V. \& Pierce, M. E. (1989). US Patent No. 4870186. Allen, F. H. (2002). Acta Cryst. B58, 380-388. Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Griffiths, G. J., Hauck, M. B., Imwinkelreid, R., Kohr, J., Roten, C. A. \& Stucky, G. C. (1999). J. Org. Chem. 64, 8084-8086.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sieron, L., Nagaraj, B., Prabhuswamy, B., Yathirajan, H. S., Nagaraja, P.,
Narasegowda, R. S. \& Gaonkar, S. L. (2004). Acta Cryst. C60, o821-o823. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

